Sea state effect on the sea surface emissivity at L-band
نویسندگان
چکیده
In May 1999, the European Space Agency (ESA) selected the Earth Explorer Opportunity Soil Moisture and Ocean Salinity (SMOS) mission to obtain global and frequent soil moisture and ocean salinity maps. SMOS single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L-band two-dimensional aperture synthesis radiometer with multiangular observation capabilities. At L-band, the brightness temperature sensitivity to the sea surface salinity (SSS) is low, approximately 0.5 K/psu at 20 C, decreasing to 0.25 K/psu at 0 C, comparable to that to the wind speed 0.2 K/(m/s) at nadir. However, at a given time, the sea state does not depend only on local winds, but on the local wind history and the presence of waves traveling from far distances. The Wnd and Salinity Experiment (WISE) 2000 and 2001 campaigns were sponsored by ESA to determine the impact of oceanographic and atmospheric variables on the L-band brightness temperature at vertical and horizontal polarizations. This paper presents the results of the analysis of three nonstationary sea state conditions: growing and decreasing sea, and the presence of swell. Measured sea surface spectra are compared with the theoretical ones, computed using the instantaneous wind speed. Differences can be minimized using an “effective wind speed” that makes the theoretical spectrum best match the measured one. The impact on the predicted brightness temperatures is then assessed using the small slope approximation/small perturbation method (SSA/SPM).
منابع مشابه
A new empirical model of sea surface microwave emissivity for salinity remote sensing
[1] SMOS (Soil Moisture and Ocean Salinity) is a European Space Agency mission that aims at generating global ocean salinity maps with an accuracy of 0.1 psu, at spatial and temporal resolution suitable for climatic studies. The satellite sensor is an L-band (1400–1427 MHz) aperture synthesis interferometric radiometer. Sea surface salinity (SSS) can be retrieved since the brightness temperatur...
متن کاملEmissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures
For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS) with L-band brightness temperature (1.4 GHz) because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST). With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C) are measured for varying SSS, ...
متن کاملDetermination of the sea surface emissivity at L-band and application to SMOS salinity retrieval algorithms: Review of the contributions of the UPC-ICM
[1] This work describes the main effects that have to be taken into account to model the sea surface emission at L-band, and the existing approaches to perform the sea surface salinity retrieval from multiangular radiometric measurements. This manuscript reviews the activities carried out in these fields during the past years by the Universitat Politècnica de Catalunya (UPC) in collaboration wi...
متن کاملSea surface emissivity observations at L-band: first results of the Wind and Salinity Experiment WISE 2000
—Sea surface salinity can be measured by passive microwave remote sensing at L-band. In May 1999, the European Space Agency (ESA) selected the Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Opportunity Mission to provide global coverage of soil moisture and ocean salinity. To determine the effect of wind on the sea surface emissivity, ESA sponsored the Wind and Salinity Experiment (WISE...
متن کاملT ' Ile Emissivity of Foanl - Covered Water Surface at L - Band : Theoretical ModeliI 1 g and Experilnentai Results FrOln t 11 e Frog 2003 Field Experiment
f\bstract-Sea SUl-t'ace salinity Cllll be measured by microwave radiometry at L-band (1400-1427 MHz), This frequency is a compromise between sensitivity to the salillity, small atmospheI"ic perturbation, and reasonable pixel resolution, The description of the ocean emission depends on two main factors: 1) the sea water permittivity, which is a function of sali nit y, temperature, and frequency,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 41 شماره
صفحات -
تاریخ انتشار 2003